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A subset A of a group G is called a kaleidoscopical configuration if there exists a surjective
coloring χ : X → κ such that the restriction χ|gA is a bijection for each g ∈ G. We give two
topological constructions of kaleidoscopical configurations and show that each infinite subset
of an Abelian group contains an infinite kaleidoscopical configuration.

И. В. Протасов, С. Слободянюк. Калейдоскопические конфигурации на группах // Мат.
Студiї. – 2011. – Т.36, №2. – C.115–118.

Подмножество A группы G называется калейдоскопической конфигурацией, если су-
ществует сюръективное раскрашивание χ : X → κ, такое что ограничение χ|gA является
биекцией для всех g ∈ G. Предложено две топологические конструкции калейдоскопи-
ческих конфигураций, доказано что каждое бесконечное подмножество абелевой группы
содержит бесконечную калейдоскопическую конфигурацию.

Let X be a set and let F be a family of subsets of X. Following [2], we say that
the hypergraph (X,F) is kaleidoscopical if there exists a coloring χ : X → κ (i.e. a mapping
of G onto a cardinal κ) such that the restriction χ|F is a bijection for each F ∈ F.

A subset A of a group G is said to be a kaleidoscopical configuration if the hypergraph
(G, {gA : g ∈ G}) is kaleidoscopical. Each kaleidoscopical configuration A in G is complemen-
ted, i.e. there exists a subset B of G such that G = AB and the multiplication mapping
µ : A × B → G, µ(a, b) = ab, is a bijection [2, Corollary 1.3]. If G is Abelian then the
converse statement holds [2, Corollary 1.5]. We note also that if A is kaleidoscopical in some
subgroup of G then A is kaleidoscopical in G.

In this note, we give two topological constructions of kaleidoscopical configurations and
show that each infinite subset of an Abelian group contains an infinite kaleidoscopical confi-
guration.

For a hypergraph (X,F), x ∈ X and A ⊂ X, we put

St(x,F) =
∪

{F ∈ F : x ∈ F}, St(A,F) =
∪

{St(a,F) : a ∈ A}.

Proposition 1. A hypergraph (X,F) is kaleidoscopical provided that, for some cardinal κ,
the following two conditions are satisfied:

(1) |F| ≤ κ and |F | = κ for each F ∈ F;

(2) for any subfamily A ⊂ F of cardinality |A| < κ and any subset B ⊂ X \
∪

A of
cardinality |B| < κ, the intersection St(B,F) ∩ (

∪
A) has cardinality less than κ.
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Proof. [2, Proposition 1.10].

We say that a subset A of a group G is rigid if for each g ∈ G \A, the set g−1A ∩A−1A
is finite.

Proposition 2. If A is a countable rigid subset of a group G then A is a kaleidoscopical
configuration.

Proof. We may suppose that G is countable. To apply Proposition 1, it suffices to show that,
for all c ∈ G, b ∈ G \ cA, the set

Y =
∪

{yA ∩ cA : y ∈ G, b ∈ yA}

is finite. Clearly, Y ⊆ bA−1A ∩ cA. We put g = c−1b and note that g ∈ G \ A. By the
assumption, the set A−1g ∩ A−1A is finite, so Y is finite.

An injective sequence (an)n∈ω of elements of an infinite group G is called a T -sequence [3]
if there exists a Hausdorff group topology on G in which (an)n∈ω converges to the identity
e of G. By [3, Theorem 3.2.2], a countable group G admits a non-discrete Hausdorff group
topology if and only if there is a T -sequence in G. By [3, Theorem 2.1.8], each infinite subset
of an Abelian group G contains a T -sequence if and only if, for all g ∈ G \ {0} and k ∈ N,
the set {x ∈ G : kx = g} is finite.

Theorem 1. For every T -sequence (an)n<ω in a group G, the set A = {e, an, a−1
n : n ∈ ω} is

a kaleidoscopical configuration.

Proof. In view of Proposition 2, it suffices to show that the set A = {e, an, a−1
n } is rigid.

We assume the contrary and pick g ∈ G \ A, an injective sequence (bn)n∈ω in A and two
sequences (cn)n∈ω, (dn)n∈ω in A such that bng = cndn for each n ∈ ω. Let τ be a Hausdorff
group topology on G in which (an)n∈ω converges to e. Since, at least one of the sequences
(cn)n∈ω and (dn)n∈ω must take infinitely many values, passing to limit in τ , we get g ∈ A.

Corollary 1. For every T -sequence (an)n<ω in a group G, the set A = {e, an, a−1
n : n ∈ ω}

is complemented.

Question 1. Let (an)n<ω be a T -sequence in a group G. Are the sets {e, an : n ∈ ω},
{an : n ∈ ω} kaleidoscopical?

Remark 1. Let G be an infinite Abelian group, and let A be an infinite subset of G such
that A ̸= A−1 and A∩A−1 is infinite. Then A is not rigid because the set A−1a−1

0 ∩A−1A is
infinite for each a0 ∈ A \ A−1. Thus, the sets {an : n ∈ ω} and {e, an : n ∈ ω} in Question 1
need not be rigid. Indeed, let G be a direct product G =

⊗
i∈ω⟨ai⟩, where ⟨a0⟩ is a cyclic

group of order 3, ⟨ai⟩, i > 0 are cyclic groups of order 2.

For n ∈ N, we denote by Gn[x] the set of all group words in the alphabet G ∪ {x}
containing ≤ n letters x, x−1. The family of subsets of G of the form

{g ∈ G : w(g) ̸= e, w(x) ∈ F},

where F is a finite subset of Gn[x], forms a base for the Zariski topology ζn(G) (see [2]).
By [4], ζ2(G) is non-discrete for every infinite group G.
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Theorem 2. Let G be a countable group, and let S be a subset of G such that e /∈ S but e
belongs to the closure of S in ζ2(G). Then S contains an infinite sequence (an)n∈ω such that
{an, a−1

n : n ∈ ω} is a kaleidoscopical configuration in G.

Proof. We enumerate G = {gn : n ∈ ω}, g0 = e, construct inductively an injective sequence
(an)n∈ω in S such that the set A = {an, a−1

n : n ∈ ω} is rigid and apply Proposition 2.
We put b0 = e, B0 = {b0}, choose an arbitrary element a0 ∈ S and put A0 = {a0, a−1

0 }.
Suppose that we have chosen An = {a0, a−1

0 , ..., an, a
−1
n }, Bn = {b0, b−1

0 , ..., bn, b
−1
n }, An ∩ Bn

= ∅. We take the first element gm ∈ G \ (An ∪ Bn) and put bn+1 = gm, Bn+1 = Bn ∪
{bn+1, b

−1
n+1}. Then we consider the finite system of relations

x−1b ̸= a−1x, x−1b /∈ A−1
n An, A−1

n b ∩ x−1An = ∅, A−1
n b ∩ A−1

n x = ∅,

where a ∈ An b ∈ Bn+1. Since e is in the closure of S in ζ2(G) and e satisfies the inequalities
x−1b ̸= a−1x, this system has a solution an+1 ∈ S \ (An ∪ Bn+1). We put An+1 = An ∪
{an+1, a

−1
n+1}.

After ω steps, we put A = {an, a−1
n : n ∈ ω}, B = {bn, b−1

n : n ∈ ω} and note that
B = G \ A. By the construction, for each bn, we have

A−1bn ∩ A−1A ⊂ A−1
n an ∩ A−1A,

so A is rigid.

Theorem 3. Every infinite subset S of an Abelian group G contains an infinite kaleidoscopi-
cal configuration.

Proof. We may suppose that G is countable and hence can be enumerated as G = {gn : n ∈
ω}, g0 = e.

The case when {s2 : s ∈ S} is infinite. We put b0 = e, B0 = {b0}, chose an arbitrary
element a0 ∈ S \ {e} and put A0 = {a0}. Assume that we have chosen the subsets An =
{a0, ..., an}, Bn = {b0, ..., bn}, An ∩ Bn = ∅. We take the first element gm ∈ G \ (An ∪ Bn),
put bn+1 = gm, Bn+1 = Bn ∪ {bn+1} and consider the system of relations

x−1b ̸= a−1x, x−1b /∈ A−1
n An, A−1

n b ∩ x−1An = ∅, A−1
n b ∩ A−1

n x = ∅, a ∈ An, b ∈ Bn+1.

Since the set {s2 : s ∈ S} is infinite, this system has a solution an+1 ∈ S \ (An ∪ {Bn+1}).
We put An+1 = An ∪ {an+1}.

After ω steps, we put A = {an : n ∈ ω}, B = {bn : n ∈ ω} and note that B = G \ A. By
the construction, for each bn, we have:

A−1bn ∩ A−1A ⊂ A−1
n bn ∩ A−1A,

so A is rigid and we can apply Proposition 2.
The case when {s2 : s ∈ S} is finite. We may suppose that s2 = c for some c ∈ G and

every s ∈ S. Choose an arbitrary s0 ∈ S and put S ′ = s−1
0 S. Then s2 = e for each s ∈ S ′.

We denote by H the subgroup of G generated by S ′, consider H as a linear space over Z2

and choose a countable linearly independent subset A′ of S ′. It is easy to see that A′ is rigid
in H and, by Proposition 2, A′ is kaleidoscopical in H, so s0A

′ ⊆ S and s0A
′ is a desired

kaleidoscopical configuration in G.
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Corollary 2. Every infinite subset of an Abelian group contains an infinite complemented
subset.

Remark 2. Let G be a group with presentation

⟨xm, ym : x2
m = y2m = e, xnxmxn = ym,m < n < ω⟩.

To see that xm ̸= xn, ym ̸= yn, m < n < ω, xi ̸= xj for all i, j ∈ ω, we can use some
homomorphisms from G onto the semidirect product

(⟨a0⟩ × ⟨b0⟩)h (⟨a1⟩ × ⟨b1⟩),

where a20 = b20 = a21 = b21 = e and a1, b1 acts on ⟨a0⟩ × ⟨b0⟩ as the swapping coordinates.
Since xmxn = xnym, m < ω, we see that the subsets X = {xn : n ∈ ω} has no infinite rigid
subsets.

Question 2. Does every infinite subset of an infinite group contain an infinite kaleidoscopical
(complemented) subset?
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